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This paper presents a study of the free and forced interior acoustic response of a "nite
uniform cylindrical shell. The cross-section of the shell is a square with rounded corners.
Conformal mapping is used to map the physical domain onto a circular cylindrical domain.
The acoustic response is obtained in the circular domain by using the Rayleigh}Ritz method
in conjunction with a variational principle. Numerical simulation results are presented
showing the mode shapes and the forced pressure distribution at various frequencies.
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1. INTRODUCTION

Large global transport aircraft will be required both militarily and commercially in the
future. The fuselages of these aircraft will most likely involve cross-sections with shapes
other than circular. Fuselage cross-sections involving straight elements for the keel, crown
and sides connected by rounded corners are of particular importance. With such
cross-sections, the bending stresses due to fuselage loads can be large. Minimization of the
bending stresses has been studied quite extensively in the past [1}3]. In the current work,
the internal acoustic response of a fuselage with such a cross-section is analyzed.

An example of an existing aircraft with such a cross-section is the Dornier 228. The
structure and cavity modes have been computed for this aircraft using a "nite element
analysis [4]. Experiments have also been done to measure the noise levels inside the fuselage
during #ight. The current work applies the method of conformal mapping to compute the
free and forced acoustic responses of the air inside the structure. The non-circular domain is
mapped to the interior of a unit circle by a conformal mapping. The system is then analyzed
in the circular domain and the solution is mapped back onto the physical domain. Use of
conformal mapping is widespread in various areas. Examples of stress analysis of elastic
plates with irregular geometry can be found in references [5}7]. Vibration analysis of
non-circular plates and shells using conformal mapping has also been studied [8}11]. The
acoustic responses in irregularly shaped domains have been investigated in references
[12}15]. The acoustic solutions of #uid waveguides with complicated cross-sections have
been presented in references [16}18]. The method of conformal mapping has been used by
DiPerna and Stanton in the investigation of sound scattering by cylinders with non-circular
cross-sections [19]. The emphasis of this work is to study the interior acoustic response of
an aircraft fuselage with a non-circular cross-section by using conformal mapping in
conjunction with a variational formulation. This paper studies both the free and forced
acoustic responses in the enclosure. Experimental validation of the prediction, however, is
beyond the scope of this preliminary study.
0022-460X/01/120283#13 $35.00/0 ( 2001 Academic Press
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The paper is organized as follows. A variational principle for interior acoustic problems
and the conformal mapping for the cylindrical shell with a non-circular cross-section are
presented in section 2. The Rayleigh}Ritz method for the acoustic solution is outlined. In
section 3, the mode shapes of the acoustic response for the non-circular cylindrical interior
are presented. The pressure distribution on the boundary of the cylinder subject to an
interior acoustic excitation is also studied.

2. PROBLEM STATEMENT

2.1. VARIATIONAL PRINCIPLE

The variational approach has been used in the analysis of structural-acoustic problems
by Gladwell [20, 21]. For our problem, the special geometry also calls for the use of
a variational formulation. We have found that although the acoustic pressure p(r, t) is the
physical variable of interest, it is more convenient to consider the variational formulation in
terms of the acoustic velocity potential U(r, t). These two terms are related through
Bernoulli's equation [22, 23]
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where v is the particle velocity, c
0

is the speed of sound in the air and dv is the elemental
volume in the physical domain D(r). A volume displacement density q(r, t) in the enclosure is
considered as the excitation. The virtual work done by this source is given as
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Equations (2) and (3) show that the kinetic energy ¹ is related to (+U)2 and the potential
energy < to UQ 2. This is opposite to the results commonly seen in structural analysis. This
reversal is the reason that the virtual work in equation (4) is given by a product of the virtual
force and the displacement. In structural analysis, the virtual work is a product of the
external force and the virtual displacement [24].

2.2. CONFORMAL MAPPING

Consider the rigid-wall cylinder with a cross-section shown in Figure 1. Let the
cross-section of the physical domain D(r) be in the complex g-plane. This cross-section is
mapped onto a unit circle in the complex m-plane by the following conformal mapping



Figure 1. Conformal mapping from (a) the physical domain (g-plane) to (b) the circular domain (m-plane).

Figure 2. The variation of the curvature of the cross-section at the corners with the parameter k.
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[5, 8, 9]:
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The parameter k in equation (5) can be varied to control the curvature at the corners of the
square. The variation of the curvature with the parameter k is shown in Figure 2. The width
of the square is 2a and ¸

t
"25

24
is a transformation constant.

Let g"re+h"x#jy, where (r, h) and (x, y) are the polar and the Cartesian co-ordinates
of the cross-section. Since the mapping is only for the cross-section, it is a two-dimensional
mapping and the axial co-ordinate of the cylindrical interior remains unchanged. Let
m"Re+H"X#j>, where (R, H) and (X, >) are the polar and Cartesian co-ordinates,
respectively, of the cross-section in the m-plane. Hence, the total mapping for the
three-dimensional interior is from r"(x, y, z)"(r, h, z) to R"(X, >, z)"(R, H, z). Note
that z is the axial co-ordinate in both domains. Hamilton's principle for the present problem
in the transformed domain reads as
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where J(R) is the Jacobian of the three-dimensional mapping and dv (R) is the elemental
volume in the transformed domain. The directional derivative LU(R)/Ln (g) is along the
outward normal to the surface S(R). The governing inhomogeneous wave equation in the
transformed domain can be derived from equation (6) [16}18]:
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where + 2m is the two-dimensional Laplace operator in the m-plane, and
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When the transformation is an identity, Ddm/dgD"1, and equation (7) becomes the
well-known wave equation. Because of the complex coupling between the R and
H co-ordinates in Ddm/dgD2, the method of separation of variables is not applicable to
equation (7).

An important property of conformal mapping is that the relative angles are preserved
[25]. In particular, the direction of the normal to the surface is also preserved. The
directional derivatives along the normal of the curved surface of the shell in the two
domains are related as
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This ensures that the rigid-wall boundary condition is preserved in both domains:
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Since the mapping of the z-co-ordinate is identity, the boundary conditions in the
z direction on the rigid end caps at z"0 and ¸ are also unchanged by the transformation,
where ¸ is the length of the cylinder.

The solutions to the present acoustic problem can be solved in the transformed domain
by using either the Rayleigh}Ritz or Galerkin method. Both these methods are essentially
equivalent in terms of accuracy and convergence of the solution [24]. In this paper, the
solutions are obtained with the Rayleigh}Ritz method.

2.3. RAYLEIGH}RITZ METHOD

Because of the boundary condition (10), the acoustic modes for the circular cylindrical
domain are comparison functions for the present acoustic problem governed by equation
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(7) [24]. The velocity potential in the transformed domain can then be written as
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This transcendental equation corresponds to the boundary condition (10). By way of
construction, the velocity potential in equation (11) satis"es all the boundary conditions in
the transformed domain, but not the governing equation.

We denote by N
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Equation (11) can now be written in the matrix form

U(R,H, z, t)"tT (R,H, z)/(t). (13)

Substituting equation (13) into equation (6), we can obtain the equation for the expansion
coe$cients as

A/#B/G"q5 , (14)

where the N
t
]N

t
matrix A is derived from the kinetic energy and is a generalized sti!ness

matrix. Similarly, the N
t
]N

t
matrix B is obtained from the potential energy and is the

generalized mass matrix. The N
t
]1 vector q refers to the set of generalized forces acting on

the system due to the internal acoustic excitation.

2.4. MODAL ANALYSIS

Consider the free undamped solution /(t)"/(u)e+ut. Equation (14) reduces to

[A!u2B]/(u)"0. (15)
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For the case of harmonically forced vibration q(t)"q (u)e+ut, equation (14) is reduced to

[A!u2B]/(u)"juq(u). (18)
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Using equation (16) and introducing the transformation /"Uy, we obtain a set of
uncoupled equations for y,

[X!u2I] y"juUTq (u). (19)

The vector y can be obtained in closed form for a general excitation q (r, t). After obtaining
y and /, the total forced acoustic response in the shell in the time domain is given by
equation (13). The pressure distribution for both the free as well as the forced acoustic
response can be computed from the velocity potential U using equation (1).

2.5. A NOTE ON COMPUTATION

Recall that the mapping of the z-co-ordinate is identity. The acoustic solution along the
z-co-ordinate is separable from the (R, H) co-ordinates. Furthermore, the boundary
conditions in the z direction are unchanged by the conformal mapping. We can show that
cos (mnz/¸) is still the component of the modal function in the transformed domain.
Therefore, the orthogonality is preserved in the z direction when the expansion in equation
(11) is used. As a result, the matrices A and B have a black-diagonal structure. For example,
the matrix A can be written as

A"

A
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A
1

}

A
M

, (20)

where A
m

(m"0, 1,2 , M) is a square matrix of dimension (2N#1)]P, and is associated
with the function cos (mnz/¸) for a given m. Because of the block-diagonal form, we can
conduct the modal analysis, and calculate the acoustic responses in a block-by-block
manner. The memory requirement for computing the acoustic response with many
expansion terms is thus substantially reduced. The speed of computation is consequently
enhanced.

This block-by-block computation ensures that the various sets of resonant frequencies for
di!erent longitudinal modes m are independent of each other. The number of longitudinal
terms M does not e!ect the convergence of resonant frequencies in each individual block m.
Figure 3 shows an example of the convergence of the resonant frequency of the mode
Figure 3. The variation of the resonant frequency of a mode with the number P of expansion terms in radial
direction, while keeping the number N of expansion terms in circumferential direction constant. The mode is
dominated by the expansion function with indices n"!3, p"2, m"0: (0), N"10; (} ) }), N"5; (2), N"3.



Figure 4. The variation of the resonant frequency of a mode with the number P of expansion terms in radial
direction, while keeping the number N of expansion terms in circumferential direction constant. The mode is
dominated by the expansion function with indices n"!3, p"2, m"5: (0), N"10; (} ) }), N"5; (*), N"3.
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dominated by the expansion function with indices n"!3, p"2, and m"0. The number
of terms in the radial direction P is increased from 1 to 10 while the number of terms in
the circumferential direction N is kept constant. The "gure shows the cases with N"3,
5 and 10. It can be seen from the "gure that the resonant frequency of this mode quickly
converges as the number of terms in the expansion is increased. Similar convergence trends
have also been observed for the modes with m'0. To illustrate this, Figure 4 shows the
convergence of the mode dominated by the expansion function with indices n"!3, p"2,
and m"5. The resonant frequency of this mode also converges as the number of terms is
increased.

Since the expansion function given in equation (11) leads to the Fourier series solution of
the acoustic problem, the convergence of the solution with respect to the number of
expansion terms is well known. In applying the Rayleigh}Ritz method, we need to choose
the number of expansion terms for the solution. This is commonly done in the area of
structural dynamics by considering the frequency bandwidth of interest. One chooses the
number of expansion terms such that all the acoustic modes with resonant frequencies fall in
the bandwidth, and makes sure that these modes are accurately approximated by adding
additional expansion terms.

3. NUMERICAL RESULTS

Next, we present numerical results to demonstrate the application of the method. The
cylindrical shell under considerations is 5 m long and has a 2]2 m2 cross-section with
rounded corners of radius 0)61 m. This corner radius corresponds to the parameter k"0)75
as can be seen from Figure 2. The air density is o"1)023 kg/m3 and the speed of sound in
the air is c

0
"330 m/s.

3.1. MODE SHAPES OF ACOUSTIC PRESSURE

The numbers of expansion terms in this example are chosen as M"10, N"5 and P"5
to demonstrate the method. The mode shapes of the acoustic pressure are presented at the

cross-section z"¸/J2.
Figure 5 shows the real and imaginary parts of the normalized mode shapes for the

acoustic pressure p
i
(R,H, z, t)"!ojuU

i
(R, H, z, t) at the resonant frequency 91)25 Hz. The



Figure 5. The mode shapes of the acoustic pressure at the resonant frequency 91)25 Hz. The thick line outlines
the boundary of the cross-section while the thin line is the mode shape. The pressure is in Pascal, and is scaled for
proper visualization around the physical domain. This is done for all other "gures of mode shapes in the paper: (a)
real part,(b) imaginary part.

Figure 6. The contribution of the expansion coe$cients to the modal vector at the resonant frequency 91)25 Hz.
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modal vector that describes the contribution of the expansion functions to this mode is
shown in the form of a bar graph in Figure 6. The 6th function with indices m"0, p"1 and
n"1 is dominant at this frequency. Note that there is a phase shift of n/2 between the real
and the imaginary parts of the mode shapes. This is true for the several mode shapes
presented later. The real and imaginary parts of the mode shapes of a circular cylindrical
shell at the resonant frequency 96)70 Hz are shown in Figure 7. This mode shape is
calculated using the same computer program as for the non-circular shell. The conformal
mapping in this case is selected to be an identity. The modal contribution to this mode
shape also shows the 6th function to be dominant with the indices m"0, p"1 and n"1
similar to that in Figure 6. It is observed that the mode shape in the non-circular cylindrical
shell is similar to the corresponding mode shape in the circular cylinder except for slight
distortions at the corners.

The mode shapes at a resonant frequency of 349)76 Hz are shown in Figure 8. Figure 9
represents the modal contribution of the expansion functions to this mode. Note that the
dominant functions in this case are represented by the set of indices m"0, p"1 and
n"$2. There are also contributions from the functions corresponding to the indices
m"0, p"2 and n"$2. Figure 10 shows the mode shapes at a resonant frequency of
396)17 Hz. Figure 11 represents the modal contribution of the expansion functions to this
mode. The dominant functions correspond to the set of indices m"1, p"1 and n"$3.



Figure 7. The mode shapes of the acoustic pressure in a circular cylindrical shell at the resonant frequency
96)70 Hz. The thick solid line outlines the cross-section of the shell while the thin solid line represents the mode
shape: (a) real part, (b) imaginary part.

Figure 8. The real and imaginary parts of the mode shape of the acoustic pressure with the resonant frequency
349)76 Hz. The mode shapes are represented by the thin line and the cross-section of the shell is shown by the thick
line: (a) real part, (b) imaginary part.

Figure 9. The contribution of the expansion coe$cients to the modal vector at the resonant frequency
349)76 Hz.
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There are also contributions from the functions corresponding to the indices m"1, p"3
and n"$1.

Because the mapping in the z direction is identity, and because cos (mnz/¸) is part of the
true mode function of the system, the mode shapes in the z direction are the same as the
function cos (mnz/¸) and are not graphically shown in the paper.



Figure 10. The real and imaginary parts of the mode shape of the acoustic pressure with the resonant frequency
396)17 Hz. The mode shapes are represented by the thin line and the cross-section of the shell is shown by the thick
line: (a) real part, (b) imaginary part.

Figure 11. The contribution of the expansion coe$cients to the modal vector at the resonant frequency
396)17 Hz.
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3.2. FORCED RESPONSE

The excitation source considered in this paper is in the form of a point volume
displacement within the enclosure. This can be expressed mathematically as [22]

q(r, t)"q
0
(u) e+utd(r!r

0
), (21)

where r
0

refers to the position of the source. For all the simulations in this section,

the source is assumed to be at the position r"0)75 m, h"n/4 and z"¸/J2 in the
physical domain. The magnitude of the excitation source is given by q

0
(u)"1 m3. The

forced response is computed along the curved boundary of the shell at the cross-section

z"¸/J2.
In the study of the forced response of the system, the variation of the pressure over

a range of frequencies is analyzed. Figure 12 represents the frequency response of the

pressure at r"1)12 m, h"n/4 and z"¸/J2. The sound pressure level (SPL) is in dB
referenced to 20 lPa. The various peaks and valleys in the graph represent the resonant and
anti-resonant frequencies respectively. The spatial distribution of the forced acoustic
pressure response is computed at a few of these frequencies.



Figure 12. The frequency response function of the forced acoustic pressure: (a) magnitude of the sound pressure
level in dB re 20 lPa and (b) phase angle.

Figure 13. (a) The spatial distribution of the forced pressure response in Pascal at the resonant frequency
160)5 Hz. The dominant mode in this case has the indices m"0, p"1 and n"$1. (b) The forced response
pressure distribution at the anti-resonant frequency 156)2 Hz. The thick solid line represents the cross-section of
the shell while the acoustic response is represented by the thin solid line. The pressure is scaled for proper
visualization around the physical domain.
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Figure 13 shows the forced pressure response at the resonant and anti-resonant
frequencies: 160)5 and 156)2 Hz respectively. The response at the resonant frequency is
dominated by the modes with m"0, p"1 and n"$1. The pressure distribution is
symmetrical with respect to the radial axis at h"n/4 where the excitation source is located.
The response at the anti-resonant frequency contains contribution from a number of
acoustic modes. As a result, the spatial distribution of the response does not resemble any
acoustic mode shape.

The spatial distributions of the forced pressure response at the resonant frequency
320)5 Hz and the anti-resonant frequency 321)5 Hz are shown in Figure 14. The response at
the resonant frequency is dominated by the acoustic mode shape with m"0, p"2 and
n"$2. At the anti-resonant frequency 321)5 Hz, the response again consists of
contributions from several modes and is distorted.



Figure 14. (a) The spatial distribution of the forced pressure response in Pascal at the resonant frequency
320)5 Hz. The dominant mode has the indices m"0, p"2 and n"$2. (b) The forced response pressure
distribution at the anti-resonant frequency 321)5 Hz. The thick solid line represents the cross-section of the shell
while the acoustic response is represented by the thin solid line. The pressure is scaled for proper visualization
around the physical domain.
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4. CONCLUDING REMARKS

The free and forced acoustic response inside cylindrical shells with a non-circular
cross-section has been studied. The solution method uses a conformal mapping to
transform the non-circular domain into a circular one. The available mode functions for the
circular domain are used as comparison functions in the Fourier series expansion for the
solution of the original acoustic problem. The convergence of the Fourier series solution has
been well established. In order to further assess the accuracy of the results, one must
compare them with solutions obtained from di!erent methods such as the "nite element
analysis or with experimental results. Such a comparative study is beyond the scope of this
paper.
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